
Chapter 11

Ordered Structures

Concepts:
. The java.lang.Comparable interface
. The java.util.Comparator

. The OrderedStructure interface

. The OrderedVector

. The OrderedList

“Make no mistake about it.
A miracle has happened. . .
we have no ordinary pig.”

“Well,” said Mrs. Zuckerman,
“it seems to me you’re a little off.

It seems to me we have
no ordinary spider.”

—Elwyn Brooks White

WE HAVE MADE NO ASSUMPTIONS about the type of data we store within our
structures—so far. Instead, we have assumed only that the data referenced are
a subclass of the type Object. Recall that all classes are subtypes of Object
in Java, so this is hardly a constraint. Data structures serve a purpose, often
helping us perform tasks more complex than “just holding data.” For example,
we used the Stack and Queue classes to guide a search through search space in
the previous chapter.

One important use of data structures is to help keep data in order—the
smallest value in the structure might be stored close to the front, while the
largest value would be stored close to the rear. Once a structure is ordered it
becomes potentially useful as a mechanism for sorting: we simply insert our
possibly unordered data into the structure and then extract the values in order.
To do this, however, it is necessary to compare data values to see if they are in the
correct order. In this chapter we will discuss approaches to the various problems
associated with maintaining ordered structures. First we review material we
first encountered when we considered sorting.

11.1 Comparable Objects Revisited

In languages like C++ it is possible to override the comparison operators (<, >,
==, etc.). When two objects are compared using these operators, a user-written
method is called. Java does not support overriding of built-in operators. Thus,
it is useful to come up with a convention for supporting comparable data.

First, let’s look closely at the interface for Java’s Object. Since every class
inherits and extends the interface of the Object class, each of its methods may
be applied to any class. For example, the equals method allows us to check



254 Ordered Structures

if an Object is logically equal to another Object. In contrast, the == operator
compares two references to see if they refer to the same instance of an object.

By default, the equals function returns true whenever two references point
to exactly the same object. This is often not the correct comparison—often we
wish to have different instances of the same type be equal—so the class designer
should consider rewriting it as a class-specific method.

For our purposes, we wish to require of comparable classes a method that
determines the relative order of objects. How do we require this? Through
an interface! Since an interface is a contract, we simply wrap the compareTo

method in a language-wide interface, java.lang.Comparable:

Comparable

public interface Comparable<T>

{

public int compareTo(T that);

}

This is pretty simple: When we want to compare two objects of type T, we
simply call the compareTo method of one on another. Now, if we require that
an object be a Comparable object, then we know that it may be compared to
similarly typed data using the compareTo method.

11.1.1 Example: Comparable Ratios

Common types, such as Integers and Strings, include a compareTo method.
In this section we add methods to make the Ratio class comparable. Recall that
a Ratio has the following interface:

Ratio

public class Ratio

implements Comparable<Ratio>

{

public Ratio(int top, int bottom)

// pre: bottom != 0

// post: constructs a ratio equivalent to top::bottom

public int getNumerator()

// post: return the numerator of the fraction

public int getDenominator()

// post: return the denominator of the fraction

public double getValue()

// post: return the double equivalent of the ratio

public Ratio add(Ratio other)

// pre: other is nonnull

// post: return new fraction--the sum of this and other

public String toString()



11.1 Comparable Objects Revisited 255

// post: returns a string that represents this fraction.

public int compareTo(Ratio that)

// pre: other is non-null and type Ratio

// post: returns value <, ==, > 0 if this value is <, ==, > that

public boolean equals(Object that)

// pre: that is type Ratio

// post: returns true iff this ratio is the same as that ratio

}

A Ratio is constructed by passing it a pair of integers. These integers are cached
away—we cannot tell how—where they can later be used to compare their ratio
with another Ratio. The protected data and the constructor that initializes them
appear as follows:

protected int numerator; // numerator of ratio

protected int denominator; // denominator of ratio

public Ratio(int top, int bottom)

// pre: bottom != 0

// post: constructs a ratio equivalent to top::bottom

{

numerator = top;

denominator = bottom;

reduce();

}

We can see, now, that this class has a pair of protected ints to hold the
values. Let us turn to the compareTo method. The Comparable interface for a
type Ratio declares the compareTo method to take a Ratio parameter, so we
expect the parameter to be a Ratio; it’s not useful to compare Ratio types to
non-Ratio types. Implementation is fairly straightforward:

public int compareTo(Ratio that)

// pre: other is non-null and type Ratio

// post: returns value <, ==, > 0 if this value is <, ==, > that

{

return this.getNumerator()*that.getDenominator()-

that.getNumerator()*this.getDenominator();

}

The method checks the order of two ratios: the values stored within this ratio
are compared to the values stored in that ratio and an integer is returned. The
relationship of this integer to zero reprepresents the relationship between this

and that. The magnitude of the result is unimportant (other than being zero or
non-zero).

We can now consider the equals method:



256 Ordered Structures

public boolean equals(Object that)

// pre: that is type Ratio

// post: returns true iff this ratio is the same as that ratio

{

return compareTo((Ratio)that) == 0;

}

Conveniently, the equals method can be cast in terms of the compareTo method.
For the Ratio class, the compareTo method is not much more expensive to com-
pute than the equals, so this “handing off” of the work does not cost much.
For more complex classes, the compareTo method may be so expensive that a
consistent equals method can be constructed using independently considered
code. In either case, it is important that equals return true exactly when the
compareTo method returns 0.

Note also that the parameter to the equals method is declared as an Object.
If it is not, then the programmer is writing a new method, rather than overrid-
ing the default method inherited from the Object class. Because compareTo

compares Ratio types, we must cast the type of that to be a Ratio. If that is a
Ratio (or a subclass), the compare will work. If not, then a cast error will occur
at this point. Calling compareTo is the correct action here, since equal Ratios
may appear in different object instances. Direct comparison of references is not
appropriate. Failure to correctly implement the equals (or compareTo) method
can lead to very subtle logical errors.

Principle 17 Declare parameters of overriding methods with the most general
N

NW

SW
SE

NE

W

S

E

types possible.

To reiterate, failure to correctly declare these methods as generally as possible
makes it less likely that Java will call the correct method.

11.1.2 Example: Comparable Associations

Let us return now to the idea of an Association. An Association is a key-value
pair, bound together in a single class. For the same reasons that it is sometimes
nice to be able to compare integers, it is often useful to compare Associations.
Recall that when we constructed an Association we took great care in defining
the equals operator to work on just the key field of the Association. Similarly,
when we extend the concept of an Association to its Comparable equivalent,
we will have to be just as careful in constructing the compareTo method.

Unlike the Ratio class, the ComparableAssociation can be declared an
extension of the Association class. The outline of this extension appears as
follows:

Comparable-

Association

public class ComparableAssociation<K extends Comparable<K>,V>

extends Association<K,V>

implements Comparable<ComparableAssociation<K,V>>

{



11.1 Comparable Objects Revisited 257

public ComparableAssociation(K key)

// pre: key is non-null

// post: constructs comparable association with null value

public ComparableAssociation(K key, V value)

// pre: key is non-null

// post: constructs association between a comparable key and a value

public int compareTo(ComparableAssociation<K,V> that)

// pre: other is non-null ComparableAssociation

// post: returns integer representing relation between values

}

Notice that there are very few methods. Since ComparableAssociation is
an extension of the Association class, all the methods written for Association
are available for use with ComparableAssociations. The only additions are
those shown here. Because one of the additional methods is the compareTo

method, it meets the specification of what it means to be Comparable; thus we
claim it implements the Comparable interface.

Let’s look carefully at the implementation. As with the Association class,
there are two constructors for ComparableAssociations. The first construc-
tor initializes the key and sets the value reference to null, while the second
initializes both key and value:

public ComparableAssociation(K key)

// pre: key is non-null

// post: constructs comparable association with null value

{

this(key,null);

}

public ComparableAssociation(K key, V value)

// pre: key is non-null

// post: constructs association between a comparable key and a value

{

super(key,value);

}

Remember that there are two special methods available to constructors: this

and super. The this method calls another constructor with a different set of
parameters (if the parameters are not different, the constructor could be recur-
sive!). We write one very general purpose constructor, and any special-purpose
constructors call the general constructor with reconsidered parameter values.
The super method is a means of calling the constructor for the superclass—the
class we are extending—Association. The second constructor simply calls the
constructor for the superclass. The first constructor calls the second constructor
(which, in turn, calls the superclass’s constructor) with a null value field. All
of this is necessary to be able to construct ComparableAssociations using the
Association’s constructors.



258 Ordered Structures

Now, the compareTo method requires some care:

public int compareTo(ComparableAssociation<K,V> that)

// pre: other is non-null ComparableAssociation

// post: returns integer representing relation between values

{

return this.getKey().compareTo(that.getKey());

}

Because the compareTo method must implement the Comparable interface be-
tween ComparableAssociations, its parameter is an ComparableAssociation.
Careful thought suggests that the relationship between the associations is com-
pletely determined by the relationship between their respective keys.

Since ComparableAssociations are associations with comparable keys, we
know that the key within the association has a compareTo method. Java would
not able to deduce this on its own, so we must give it hints, by declaring the
type parameter K to be any type that implements Comparable<K>. The dec-
laration, here, is essentially a catalyst to get Java to verify that a referenced
object has certain type characteristics. In any case, we get access to both keys
through independent variables. These allow us to make the comparison by
calling the compareTo method on the comparable objects. Very little logic is
directly encoded in these routines; we mostly make use of the prewritten code
to accomplish what we need.

In the next few sections we consider features that we can provide to existing
data structures, provided that the underlying data are known to be comparable.

11.2 Keeping Structures Ordered

We can make use of the natural ordering of classes suggested by the compareTo

method to organize our structure. Keeping data in order, however, places signif-
icant constraints on the type of operations that should be allowed. If a compa-
rable value is added to a structure that orders its elements, the relative position
of the new value is determined by the data, not the structure. Since this place-
ment decision is predetermined, ordered structures have little flexibility in their
interface. It is not possible, for example, to insert data at random locations.
While simpler to use, these operations also tend to be more costly than their
unordered counterparts. Typically, the increased energy required is the result of
an increase in the friction associated with decisions needed to accomplish add

and remove.
The implementation of the various structures we see in the remainder of this

chapter leads to simpler algorithms for sorting, as we will see in Section 11.2.3.

11.2.1 The OrderedStructure Interface

Recall that a Structure is any traversable structure that allows us to add and
remove elements and perform membership checks (see Section 1.8). Since the



11.2 Keeping Structures Ordered 259

Structure interface also requires the usual size-related methods (e.g., size,
isEmpty, clear), none of these methods actually requires that the data within
the structure be kept in order. To ensure that the structures we create order their
data (according to their native ordering), we make them abide by an extended
interface—an OrderedStructure:

Ordered-

Structure

public interface OrderedStructure<K extends Comparable<K>>

extends Structure<K>

{

}

Amazingly enough we have accomplished something for almost nothing! Actu- The emperor
wears no
clothes!

ally, what is happening is that we are using the type to store the fact that the
data can be kept in sorted order. Encoded in this, of course, is that we are
working with Comparable values of generic type K.

11.2.2 The Ordered Vector and Binary Search

We can now consider the implementation of an ordered Vector of values. Since
it implements an OrderedStructure, we know that the order in which elements
are added does not directly determine the order in which they are ultimately
removed. Instead, when elements are added to an OrderedVector, they are
kept ascending in their natural order.

Constructing an ordered Vector requires little more than allocating the un-
derlying vector:

OrderedVector

public class OrderedVector<E extends Comparable<E>>

extends AbstractStructure<E>

implements OrderedStructure<E>

{

public OrderedVector()

// post: constructs an empty, ordered vector

{

data = new Vector<E>();

}

}

Rather obviously, if there are no elements in the underlying Vector, then all of
the elements are in order. Initially, at least, the structure is in a consistent state.
We must always be mindful of consistency.

Because finding the correct location for a value is important to both adding
and removing values, we focus on the development of an appropriate search
technique for OrderedVectors. This process is much like looking up a word
in a dictionary, or a name in a phone book (see Figure 11.1). First we look at
the value halfway through the Vector and determine if the value for which we
are looking is bigger or smaller than this median. If it is smaller, we restart our
search with the left half of the structure. If it is bigger, we restart our search
with the right half of the Vector. Whenever we consider a section of the Vector



260 Ordered Structures

consisting of a single element, the search can be terminated, with the success
of the search dependent on whether or not the indicated element contains the
desired value. This approach is called binary search.

We present here the code for determining the index of a value in an Or-

deredVector. Be aware that if the value is not in the Vector, the routine returns
the ideal location to insert the value. This may be a location that is outside the
Vector.

protected int locate(E target)

{

Comparable<E> midValue;

int low = 0; // lowest possible location

int high = data.size(); // highest possible location

int mid = (low + high)/2; // low <= mid <= high

// mid == high iff low == high

while (low < high) {

// get median value

midValue = data.get(mid);

// determine on which side median resides:

if (midValue.compareTo(target) < 0) {

low = mid+1;

} else {

high = mid;

}

// low <= high

// recompute median index

mid = (low+high)/2;

}

return low;

}

For each iteration through the loop, low and high determine the bounds
of the Vector currently being searched. mid is computed to be the middle
element (if there are an even number of elements being considered, it is the
leftmost of the two middle elements). This middle element is compared with
the parameter, and the bounds are adjusted to further constrain the search.
Since the portion of the Vector participating in the search is roughly halved
each time, the total number of times around the loop is approximately O(log n).
This is a considerable improvement over the implementation of the indexOf

method for Vectors of arbitrary elements—that routine is linear in the size of
the structure.

Notice that locate is declared as a protected member of the class. This
makes it impossible for a user to call directly, and makes it more difficult for a
user to write code that depends on the underlying implementation. To convince
yourself of the utility of this, both OrderedStructures of this chapter have ex-
actly the same interface (so these two data types can be interchanged), but they
are completely different structures. If the locate method were made public,
then code could be written that makes use of this Vector-specific method, and
it would be impossible to switch implementations.



11.2 Keeping Structures Ordered 261

1 3-1 0 2 3 65434 5840

3-1 0 2

42

4 65401 42 58

1

3

-1 0 2 3 4 6540 4342

43

1 3-1 0 2 3

3

6540 4342 58

1 3-1 0

58

3 4 6540 4342 58

1 3-1 0 2 3 4 6540 4342

4

1 3-1 0 2 3 4 6540 4342 58

2

3-1 0 2 3 4 6540 4342 58

1 3-1 0 2 3 4 6540 43

58

58

1 3-1 0 2 3 4 6540 4342 58

1 3-1 0 2 3 4 6540 4342 58

1

42

0 1 2 3 4 5 6 7 8 9 10 11

midlow high

12

highlow mid

0 1 2 3 4 5 6 7 8 9 10 11

40

midlow high

12

low highmid

value

value

93

93

Figure 11.1 Finding the correct location for a comparable value in an ordered array.
The top search finds a value in the array; the bottom search fails to find the value, but
finds the correct point of insertion. The shaded area is not part of the Vector during
search.



262 Ordered Structures

Implementation of the locate method makes most of the nontrivial Or-
deredVector methods more straightforward. The add operator simply adds an
element to the Vector in the position indicated by the locate operator:

public void add(E value)

// pre: value is non-null

// post: inserts value, leaves vector in order

{

int position = locate(value);

data.add(position,value);

}

It is interesting to note that the cost of looking up the value is O(log n), but
the insertElementAt for relatively “small” values can take O(n) time to insert.
Thus, the worst-case (and expected—see Problem 11.6) time complexity of the
add operation is O(n), linear in the size of the structure. In reality, for large
Vectors, the time required to find the index of a value using the OrderedVector
method is significantly reduced over the time required using the underlying
Vector method. If the cost of comparing two objects exceeds the cost of assign-
ing one object to another, the use of binary search can be expected to reduce
the cost of the add operation by as much as a factor of 2.

Both contains and remove can also make use of the locate operator. First,
we consider testing to see if an element is contained by the OrderedVector:

public boolean contains(E value)

// pre: value is non-null

// post: returns true if the value is in the vector

{

int position = locate(value);

return (position < size()) &&

data.get(position).equals(value);

}

We simply attempt to find the item in the Vector, and if the location returned
contains the value we desire, we return true; otherwise we return false. Since
locate takes O(log n) time and the check for element equality is constant, the
total complexity of the operation is O(log n). The Vector version of the same
operation is O(n) time. This is a considerable improvement.

The return statement, you will note, returns the result of a logical and (&&)
operator. This is a short-circuiting operator: if, after evaluating the left half of
the expression, the ultimate value of the expression is known to be false, then
the second expression is not evaluated. That behavior is used here to avoid
calling the get operator with a position that might exceed the size of the
structure, that is, the length of the Vector. This is a feature of many languages,
but a potential trap if you ever consider reordering your boolean expressions.

Removing a value from an OrderedVector involves finding it within the
Vector and then explicitly extracting it from the structure:



11.2 Keeping Structures Ordered 263

public E remove(E value)

// pre: value is non-null

// post: removes one instance of value, if found in vector

{

if (contains(value)) {

// we know value is pointed to by location

int position = locate(value);

// since vector contains value, position < size()

// keep track of the value for return

E target = data.get(position);

// remove the value from the underlying vector

data.remove(position);

return target;

}

return null;

}

Like add, the operation has complexity O(n). But it executes faster than its
Vector equivalent, removeElement.

Note that by keeping the elements sorted, we have made adding and re-
moving an element from the OrderedVector relatively symmetric: the expected
complexity of each method is O(n). Yet, in the underlying Vector, an addElement

operation takes constant time, while the removeElement operation takes O(n)
time.

Extracting values in order from an OrderedStructure is accomplished by an
iterator returned from the elements method. Because the elements are stored
in the correct order in the Vector, the method need only return the value of the
Vector’s iterator method:

public Iterator<E> iterator()

{

return data.iterator();

}

The ease of implementing this particular method reassures us that our layout
of values within the vector (in ascending order) is appropriate. The rest of the
OrderedVector operators repackage similar operators from the Vector class:

public boolean isEmpty()

// post: returns true if the OrderedVector is empty

{

return data.size() == 0;

}

public void clear()

// post: vector is emptied

{

data.setSize(0);

}



264 Ordered Structures

public int size()

// post: returns the number of elements in vector

{

return data.size();

}

This “repackaging” brings up a point: Why is it necessary? If one were to,
instead, consider the OrderedVector to be an extension of the Vector class,
much of this repackaging would be unnecessary, because each of the repackaged
methods could be inherited, and those—like add, contains, and remove—that
required substantial reconsideration could be rewritten overriding the methods
provided in the underlying Vector class.

That’s all true! There’s one substantial drawback, however, that is uncov-
ered by asking a simple question: Is an OrderedVector suitably used wherever
a Vector is used? The answer is: No! Consider the following hypothetical code
that allocates an OrderedVector for use as a Vector:

static void main(String args[])

{

OrderedVector<String> v = new OrderedVector<String>();

v.add("Michael's Pizza");

v.add(1,"Cozy Pizza");

v.add(0,"Hot Tomatoes Pizza");;

}

First, the add methods are not methods for OrderedVectors. Assuming this
could be done, the semantics become problematic. We are inserting elements
at specific locations within a Vector, but it is really an OrderedVector. The
values inserted violate the ordering of elements and the postconditions of the
add method of the OrderedVector.

We now consider a simple application of OrderedStructures—sorting.

11.2.3 Example: Sorting Revisited

Now that we have seen the implementation of an OrderedStructure, we can
use these structures to sort comparable values. (If values are not comparable,
it is hard to see how they might be sorted, but we will see an approach in
Section 11.2.4.) Here is a program to sort integers appearing on the input:



11.2 Keeping Structures Ordered 265

public static void main(String[] args)

{

Scanner s = new Scanner(System.in);

OrderedStructure<Integer> o = new OrderedVector<Integer>();

// read in integers

while (s.hasNextInt())

{

o.add(s.nextInt());

}

// and print them out, in order

for (Integer i : o)

{

System.out.println(i);

}

}

In this simple program a sequence of numbers is read from the input stream.

Sort

Each number is placed within an Integer that is then inserted into the Ordered-
Structure, in this case an OrderedVector. The insertion of this value into the
Vector may involve moving, on average, n

2 elements out of the way. As the n
values are added to the Vector, a total of O(n2) values have to be moved. The
overall effect of this loop is to perform insertion sort! Once the values have been
inserted in the ordered structure, we can use an iterator to traverse the Vector

in order and print out the values in order. If the OrderedVector is substituted
with any structure that meets the OrderedStructure interface, similar results
are generated, but the performance of the sorting algorithm is determined by
the complexity of insertion.

Now, what should happen if we don’t have a Comparable data type?

11.2.4 A Comparator-based Approach

Sometimes it is not immediately obvious how we should generally order a spe-
cific data type, or we are hard-pressed to commit to one particular ordering for
our data. In these cases we find it useful to allow ordered structures to be or-
dered in alternative ways. One approach is to have the ordered structure keep
track of a Comparator that can be used when the compareTo method does not
seem appropriate. For example, when constructing a list of Integer values, it
may be useful to have them sorted in descending order.

The approach seems workable, but somewhat difficult when a comparison
needs to actually be made. We must, at that time, check to see if a Comparator

has somehow been associated with the structure and make either a Comparator-
based compare or a class-based compareTo method call. We can greatly simplify
the code if we assume that a Comparator method can always be used: we con-
struct a Comparator, the structure package’s NaturalComparator, that calls
the compareTo method of the particular elements and returns that value for
compare:



266 Ordered Structures

import java.util.Comparator;

public class NaturalComparator<E extends Comparable<E>>

implements Comparator<E>

{

public int compare(E a, E b)

// pre: a, b non-null, and b is same type as a

// post: returns value <, ==, > 0 if a <, ==, > b

{

return a.compareTo(b);

}

public boolean equals(Object b)

// post: returns true if b is a NaturalComparator

{

return (b != null) && (b instanceof NaturalComparator);

}

}

The NaturalComparator, can then serve as a default comparison method in

Natural-

Comparator

classes that wish to make exclusive use of the Comparator-based approach.
To demonstrate the power of the Comparator-based approach we can de-

velop a notion of Comparator composition: one Comparator can be used to
modify the effects of a base Comparator. Besides the NaturalComparator,
the structure package also provides a ReverseComparator class. This class
keeps track of its base Comparator in a protected variable, base. When a
ReverseComparator is constructed, another Comparator can be passed to it
to reverse. Frequently we expect to use this class to reverse the natural or-
der of values, so we provide a parameterless constructor that forces the base
Comparator to be NaturalComparator:

Reverse-

Comparator

protected Comparator<E> base; // comparator whose ordering is reversed

public ReverseComparator()

// post: constructs a comparator that orders in reverse order

{

base = new NaturalComparator<E>();

}

public ReverseComparator(Comparator<E> base)

// post: constructs a Comparator that orders in reverse order of base

{

this.base = base;

}

We are now ready to implement the comparison method. We simply call the
compare method of the base Comparator and reverse its sign. This effectively
reverses the relation between values.

public int compare(E a, E b)



11.2 Keeping Structures Ordered 267

// pre: a, b non-null, and b is of type of a

// post: returns value <, ==, > 0 if a <, ==, > b

{

return -base.compare(a,b);

}

Note that formerly equal values are still equal under the ReverseComparator

transformation.
We now turn to an implementaton of an OrderedStructure that makes ex-

clusive use of Comparators to keep its elements in order.

11.2.5 The Ordered List

Arbitrarily inserting an element into a list is difficult, since it requires moving to
the middle of the list to perform the addition. The lists we have developed are
biased toward addition and removal of values from their ends. Thus, we choose
to use the underlying structure of a SinglyLinkedList to provide the basis for
our OrderedList class. As promised, we will also support orderings through
the use of Comparators. First, we declare the class as an implementation of the
OrderedStructure interface:

OrderedListpublic class OrderedList<E extends Comparable<E>>

extends AbstractStructure<E> implements OrderedStructure<E>

The instance variables describe a singly linked list as well as a Comparator to
determine the ordering. The constructors set up the structure by initializing the
protected variables using the clear method:

protected Node<E> data; // smallest value

protected int count; // number of values in list

protected Comparator<? super E> ordering; // the comparison function

public OrderedList()

// post: constructs an empty ordered list

{

this(new NaturalComparator<E>());

}

public OrderedList(Comparator<? super E> ordering)

// post: constructs an empty ordered list ordered by ordering

{

this.ordering = ordering;

clear();

}

public void clear()

// post: the ordered list is empty

{

data = null;



268 Ordered Structures

count = 0;

}

Again, the advantage of this technique is that changes to the initialization of the
underlying data structure can be made in one place within the code.

By default, the OrderedList keeps its elements in the order determined by
the compareTo method. The NaturalOrder comparator does precisely that. If
an alternative ordering is desired, the constructor for the OrderedList can be
given a Comparator that can be used to guide the ordering of the elements in
the list.

To warm up to the methods that we will soon have to write, let’s consider
implementation of the contains method. It uses the finger technique from our
work with SinglyLinkedLists:

public boolean contains(E value)

// pre: value is a non-null comparable object

// post: returns true iff contains value

{

Node<E> finger = data; // target

// search down list until we fall off or find bigger value

while ((finger != null) &&

ordering.compare(finger.value(),value) < 0)

{

finger = finger.next();

}

return finger != null && value.equals(finger.value());

}

This code is very similar to the linear search contains method of the Singly-

LinkedList class. However, because the list is always kept in order, it can stop
searching if it finds an element that is larger than the desired element. This
leads to a behavior that is linear in the size of the list, but in the case when a
value is not in the list, it terminates—on average—halfway down the list. For
programs that make heavy use of looking up values in the structure, this can
yield dramatic improvements in speed.

Note the use of the compare method in the ordering Comparator. No matter
what order the elements have been inserted, the ordering is responsible for
keeping them in the order specified.

Exercise 11.1 What would be necessary to allow the user of an OrderedStruc-

ture to provide an alternative ordering during the lifetime of a class? This method
might be called sortBy and would take a Comparator as its sole parameter.

Now, let us consider the addition of an element to the OrderedList. Since
the elements of the OrderedList are kept in order constantly, we must be care-
ful to preserve that ordering after we have inserted the value. Here is the code:



11.2 Keeping Structures Ordered 269

public void add(E value)

// pre: value is non-null

// post: value is added to the list, leaving it in order

{

Node<E> previous = null; // element to adjust

Node<E> finger = data; // target element

// search for the correct location

while ((finger != null) &&

ordering.compare(finger.value(),value) < 0)

{

previous = finger;

finger = finger.next();

}

// spot is found, insert

if (previous == null) // check for insert at top

{

data = new Node<E>(value,data);

} else {

previous.setNext(

new Node<E>(value,previous.next()));

}

count++;

}

Here we use the finger technique with an additional previous reference to help
the insertion of the new element. The first loop takes, on average, linear time
to find a position where the value can be inserted. After the loop, the previous

reference refers to the element that will refer to the new element, or is null, if
the element should be inserted at the head of the list. Notice that we use the
Node methods to ensure that we reuse code that works and to make sure that
the elements are constructed with reasonable values in their fields.

One of the most common mistakes made is to forget to do important book-
keeping. Remember to increment count when inserting a value and to decre-
ment count when removing a value. When designing and implementing struc-
tures, it is sometimes useful to look at each method from the point of view of
each of the bookkeeping variables that you maintain.

Principle 18 Consider your code from different points of view.

N

NW

SW
SE

NE

W

S

E

Removing a value from the OrderedList first performs a check to see if the
value is included, and then, if it is, removes it. When removing the value, we
return a reference to the value found in the list.

public E remove(E value)

// pre: value is non-null

// post: an instance of value is removed, if in list

{

Node<E> previous = null; // element to adjust

Node<E> finger = data; // target element



270 Ordered Structures

// search for value or fall off list

while ((finger != null) &&

ordering.compare(finger.value(),value) < 0)

{

previous = finger;

finger = finger.next();

}

// did we find it?

if ((finger != null) && value.equals(finger.value())) {

// yes, remove it

if (previous == null) // at top?

{

data = finger.next();

} else {

previous.setNext(finger.next());

}

count--;

// return value

return finger.value();

}

// return nonvalue

return null;

}

Again, because the SinglyLinkedListIterator accepts a SinglyLinked-

ListElement as its parameter, the implementation of the OrderedList’s iter-
ator method is particularly simple:

public Iterator<E> iterator()

{

return new SinglyLinkedListIterator<E>(data);

}

The remaining size-related procedures follow those found in the implemen-
tation of SinglyLinkedLists.

11.2.6 Example: The Modified Parking Lot

In Section 9.2 we implemented a system for maintaining rental contracts for aRenter—
ambiguous

noun:
(1) one who

rents from
others,

(2) one who
rents to others.

small parking lot. With our knowledge of ordered structures, we now return to
that example to incorporate a new feature—an alphabetical listing of contracts.

As customers rent spaces from the parking office, contracts are added to
a generic list of associations between renter names and lot assignments. We
now change that structure to reflect a better means of keeping track of this
information—an ordered list of comparable associations. This structure is de-
clared as an OrderedStructure but is assigned an instance of an OrderedList:

OrderedStructure<ComparableAssociation<String,Space>> rented =

new OrderedList<ComparableAssociation<String,Space>>(); // rented spaces



11.2 Keeping Structures Ordered 271

When a renter fills out a contract, the name of the renter and the parking space
information are bound together into a single ComparableAssociation:

ParkingLot2

String renter = r.readString();

// link renter with space description

rented.add(new ComparableAssociation<String,Space>(renter,location));

System.out.println("Space "+location.number+" rented.");

Notice that the renter’s name is placed into a String. Since Strings support
the compareTo method, they implement the Comparable interface. The default
ordering is used because the call to the constructor did not provide a specific
ordering.

At this point, the rented structure has all contracts sorted by name. To print
these contracts out, we accept a new command, contracts:

if (command.equals("contracts"))

{ // print out contracts in alphabetical order

for (ComparableAssociation<String,Space> contract : rented) {

// extract contract from iterator

// extract person from contract

String person = contract.getKey();

// extract parking slot description from contract

Space slot = contract.getValue();

// print it out

System.out.println(person+" is renting "+slot.number);

}

}

An iterator for the OrderedStructure is used to retrieve each of the Compar-

ableAssociations, from which we extract and print the renters’ names in al-
phabetical order. Here is an example run of the program (the user’s input is
indented):

rent small Alice

Space 0 rented.

rent large Bob

Space 9 rented.

rent small Carol

Space 1 rented.

return Alice

Space 0 is now free.

return David

No space rented to David.

rent small David

Space 2 rented.

rent small Eva

Space 0 rented.

quit

6 slots remain available.



272 Ordered Structures

Note that, for each of the requests for contracts, the contracts are listed in al-
phabetical order. This example is particularly interesting since it demonstrates
that use of an ordered structure eliminates the need to sort the contracts before
they are printed each time and that the interface meshes well with software that
doesn’t use ordered structures. While running an orderly parking lot can be a
tricky business, it is considerably simplified if you understand the subtleties of
ordered structures.

Exercise 11.2 Implement an alternative Comparator that compares two parking
spaces, based on slot numbers. Demonstrate that a single line will change the order
of the records in the ParkingLot2 program.

11.3 Conclusions

Computers spend a considerable amount of time maintaining ordered data struc-
tures. In Java we described an ordering of data values using the comparison
operator, compareTo, or a Comparator. Objects that fail to have an operator
such as compareTo cannot be totally ordered in a predetermined manner. Still,
a Comparator might be constructed to suggest an ordering between otherwise
incomparable values. Java enforces the development of an ordering using the
Comparable interface—an interface that simply requires the implementation of
the compareTo method.

Once data values may be compared and put in order, it is natural to design a
data structure that keeps its values in order. Disk directories, dictionaries, filing
cabinets, and zip-code ordered mailing lists are all obvious examples of abstract
structures whose utility depends directly on their ability to efficiently maintain
a consistently ordered state. Here we extend various unordered structures in a
way that allows them to maintain the natural ordering of the underlying data.

Self Check Problems

Solutions to these problems begin on page 448.

11.1 What is the primary feature of an OrderedStructure?

11.2 How does the user communicate the order in which elements are to be
stored in an OrderedStructure?

11.3 What is the difference between a compareTo method and a comparator
with a compare method?

11.4 Are we likely to find two objects that are equal (using their equals

method) to be close together in an OrderedStructure?

11.5 Is an OrderedVector a Vector?

11.6 Is it reasonable to have an OrderedStack, a class that implements both
the Stack and OrderedStructure interfaces?



11.3 Conclusions 273

11.7 People queue up to enter a movie theater. They are stored in an OrderedStructure.
How would you go about comparing two people?
11.8 Sally and Harry implement two different compareTo methods for a class
they are working on together. Sally’s compareTo method returns −1, 0, or +1,
depending on the relationship between two objects. Harry’s compareTo method
returns −6, 0, or +3. Which method is suitable?
11.9 Sally and Harry are working on an implementation of Coin. Sally de-
clares the sole parameter to her compareTo method as type Object. Harry
knows the compareTo method will always be called on objects of type Coin

and declares the parameter to be of that type. Which method is suitable for
storing Coin objects in a OrderedVector?

Problems

Solutions to the odd-numbered problems begin on page 475.
11.1 Describe the contents of an OrderedVector after each of the following
values has been added: 1, 9, 0, −1, and 3.
11.2 Describe the contents of an OrderedList after each of the following
values has been added: 1, 9, 0, −1, and 3.
11.3 Suppose duplicate values are added to an OrderedVector. Where is the
oldest value found (with respect to the newest)?
11.4 Suppose duplicate values are added to an OrderedList. Where is the
oldest value found (with respect to the newest)?
11.5 Show that the expected insertion time of an element into an Ordered-

List is O(n) in the worst case.
11.6 Show that the expected insertion time of an element into an Ordered-

Vector is O(n).
11.7 Under what conditions would you use an OrderedVector over an Or-

deredList?
11.8 At what point does the Java environment complain about your passing
a non-Comparable value to an OrderedVector?
11.9 Write the compareTo method for the String class.
11.10 Write the compareTo method for a class that is to be ordered by a field,
key, which is a double. Be careful: The result of compareTo must be an int.
11.11 Write the compareTo method for a class describing a person whose name
is stored as two Strings: first and last. A person is “less than” another if they
appear before the other in a list alphabetized by last name and then first name
(as is typical).
11.12 Previous editions of the structures package opted for the use of a
lessThan method instead of a compareTo method. The lessThan method would
return true exactly when one value was lessThan another. Are these ap-
proaches the same, or is one more versatile?



274 Ordered Structures

11.13 Suppose we consider the use of an OrderedStructure get method that
takes an integer i. This method returns the ith element of the OrderedStructure.
What are the best- and worst-case running times for this method on Ordered-

Vector and OrderedList?

11.14 Your department is interested in keeping track of information about
majors. Design a data structure that will maintain useful information for your
department. The roster of majors, of course, should be ordered by last name
(and then by first, if there are multiple students with the same last name).



11.4 Laboratory: Computing the “Best Of”

Objective. To efficiently select the largest k values of n.

Discussion. One method to select the largest k values in a sequence of n is to
sort the n values and to look only at the first k. (In Chapter 13, we will learn of
another technique: insert each of the n values into a max-heap and extract the
first k values.) Such techniques have two important drawbacks:

• The data structure that keeps track of the values must be able to hold
n >> k values. This may not be possible if, for example, there are more
data than may be held easily in memory.

• The process requires O(n log n) time. It should be possible to accomplish
this in O(n) time.

One way to reduce these overheads is to keep track of, at all times, the best k
values found. As the n values are passed through the structure, they are only
remembered if they are potentially one of the largest k values.

Procedure. In this lab we will implement a BestOf OrderedStructure. The
constructor for your BestOf structure should take a value k, which is an upper
bound on the number of values that will be remembered. The default construc-
tor should remember the top 10.

An add method takes an Object and adds the element (if reasonable) in
the correct location. The get(i) method should return the ith largest value en-
countered so far. The size method should return the number of values currently
stored in the structure. This value should be between 0 and k, inclusive. The
iterator method should return an Iterator over all the values. The clear

method should remove all values from the structure.
Here are the steps that are necessary to construct and test this data structure:

1. Consider the underlying structure carefully. Because the main consider-
ations of this structure are size and speed, it would be most efficient to
implement this using a fixed-size array. We will assume that here.

2. Implement the add method. This method should take the value and, like a
pass of insertion sort, it should find the correct location for the new value.
If the array is full and the value is no greater than any of the values,
nothing changes. Otherwise, the value is inserted in the correct location,
possibly dropping a smaller value.

3. Implement the get(i), size, and clear methods.

4. Implement the iterator method. A special AbstractIterator need not
be constructed; instead, values can be added to a linear structure and the
result of that structure’s iterator method is returned.



276 Ordered Structures

To test your structure, you can generate a sequence of integers between 0 and
n − 1. By the end, only values n − k . . . n − 1 should be remembered.

Thought Questions. Consider the following questions as you complete the lab:

1. What is the (big-O) complexity of one call to the add method? What is the
complexity of making n calls to add?

2. What are the advantages and disadvantages of keeping the array sorted at
all times? Would it be more efficient to, say, only keep the smallest value
in the first slot of the array?

3. Suppose that f(n) is defined to be n/2 if n is even, and 3n + 1 if n is
odd. It is known that for small values of n (less than 1040) the sequence
of values generated by repeated application of f starting at n eventually
reaches 1. Consider all the sequences generated from n < 10, 000. What
are the maximum values encountered?

4. The BestOf structure can be made more general by providing a third con-
structor that takes k and a Comparator. The comparisons in the BestOf

class can now be recast as calls to the compare method of a Comparator.
When a Comparator is not provided, an instance of the structure pack-
age’s NaturalComparator is used, instead. Such an implementation al-
lows the BestOf class to order non-Comparable values, and Comparable

values in alternative orders.

Notes:


